Algebraic and Hamiltonian Approaches to Isostokes Deformations
نویسنده
چکیده
We study a generalization of the isomonodromic deformation to the case of connections with irregular singularities. We call this generalization Isostokes Deformation. A new deformation parameter arises: one can deform the formal normal forms of connections at irregular points. We study this part of the deformation, giving an algebraic description. Then we show how to use loop groups and hypercohomology to write explicit hamiltonians. We work on an arbitrary complete algebraic curve, the structure group is an arbitrary semisimiple group.
منابع مشابه
An extended complete Chebyshev system of 3 Abelian integrals related to a non-algebraic Hamiltonian system
In this paper, we study the Chebyshev property of the 3-dimentional vector space $E =langle I_0, I_1, I_2rangle$, where $I_k(h)=int_{H=h}x^ky,dx$ and $H(x,y)=frac{1}{2}y^2+frac{1}{2}(e^{-2x}+1)-e^{-x}$ is a non-algebraic Hamiltonian function. Our main result asserts that $E$ is an extended complete Chebyshev space for $hin(0,frac{1}{2})$. To this end, we use the criterion and tools developed by...
متن کاملSymmetric Designs on Lie Algebras and Interactions of Hamiltonian Systems
Nonhamiltonian interaction of hamiltonian systems is considered. Dynamical equations are constructed by use of symmetric designs on Lie algebras. The results of analysis of these equations show that some class of symmetric designs on Lie algebras beyond Jordan ones may be useful for a description of almost periodic, asymptotically periodic, almost asymptotically periodic, and possibly, more cha...
متن کاملAlternative Algebraic Structures from Bi-hamiltonian Quantum Systems
We discuss the alternative algebraic structures on the manifold of quantum states arising from alternative Hermitian structures associated with quantum bi-Hamiltonian systems. We also consider the consequences at the level of the Heisenberg picture in terms of deformations of the associative product on the space of observables.
متن کاملGardner’s deformations of the Boussinesq equations
Using the algebraic method of Gardner’s deformations for completely integrable systems, we construct recurrence relations for densities of the Hamiltonians for the Boussinesq and the Kaup–Boussinesq equations. By extending the Magri schemes for these equations, we obtain new integrable systems adjoint with respect to the initial ones and describe their Hamiltonian structures and symmetry proper...
متن کاملPreliminary draft ON THE GEOMETRY OF SYMPLECTIC RESOLUTIONS
1. Poisson schemes 1 2. Hamiltonian reduction in the symplectic case 6 3. Deformations and quantizations of Poisson schemes 9 4. Symplectic singularities 13 5. Symplectic resolutions 18 6. Poisson deformations. 19 7. Purity 22 8. Tilting generators 25 9. Algebraic cycles and cohomological purity 28 10. Appendix 1: On rational singularities 31 11. Appendix 2: Reminder on GIT and stability 33 12....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005